Today, we are thrilled to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier design, DeepSeek-R1, along with the distilled versions ranging from 1.5 to 70 billion specifications to construct, experiment, and responsibly scale your generative AI concepts on AWS.
In this post, we show how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable steps to release the distilled versions of the models also.
Overview of DeepSeek-R1
DeepSeek-R1 is a big language design (LLM) established by DeepSeek AI that utilizes reinforcement discovering to improve thinking capabilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. A crucial distinguishing function is its reinforcement knowing (RL) step, which was utilized to fine-tune the design's reactions beyond the basic pre-training and fine-tuning procedure. By integrating RL, DeepSeek-R1 can adjust more successfully to user feedback and goals, ultimately boosting both importance and clarity. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) technique, meaning it's geared up to break down complex queries and reason through them in a detailed manner. This guided reasoning process permits the design to produce more precise, transparent, and detailed answers. This model integrates RL-based fine-tuning with CoT abilities, aiming to generate structured actions while concentrating on interpretability and user interaction. With its comprehensive capabilities DeepSeek-R1 has recorded the market's attention as a text-generation design that can be incorporated into numerous workflows such as representatives, logical reasoning and data interpretation tasks.
DeepSeek-R1 uses a Mix of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture allows activation of 37 billion parameters, allowing efficient reasoning by routing questions to the most appropriate specialist "clusters." This technique enables the design to specialize in various issue domains while maintaining general performance. DeepSeek-R1 needs a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will use an ml.p5e.48 xlarge instance to release the model. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.
DeepSeek-R1 distilled models bring the thinking abilities of the main R1 design to more effective architectures based on popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a process of training smaller, more effective models to simulate the behavior and reasoning patterns of the bigger DeepSeek-R1 design, utilizing it as a teacher design.
You can release DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we recommend deploying this design with guardrails in place. In this blog, we will utilize Amazon Bedrock Guardrails to introduce safeguards, avoid hazardous content, and assess models against crucial security requirements. At the time of writing this blog, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can produce numerous guardrails tailored to various usage cases and use them to the DeepSeek-R1 design, improving user experiences and standardizing safety controls throughout your generative AI applications.
Prerequisites
To deploy the DeepSeek-R1 model, you need access to an ml.p5e circumstances. To inspect if you have quotas for P5e, setiathome.berkeley.edu open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and validate you're utilizing ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are releasing. To ask for a limitation boost, develop a limit increase request and reach out to your account group.
Because you will be releasing this model with Amazon Bedrock Guardrails, make certain you have the proper AWS Identity and Gain Access To Management (IAM) authorizations to utilize Amazon Bedrock Guardrails. For instructions, see Establish permissions to utilize guardrails for material filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails permits you to introduce safeguards, prevent damaging material, and assess designs against essential safety criteria. You can carry out precaution for the DeepSeek-R1 design utilizing the Amazon Bedrock ApplyGuardrail API. This allows you to use guardrails to examine user inputs and design responses released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.
The basic flow involves the following actions: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the model for reasoning. After receiving the design's output, another guardrail check is applied. If the output passes this final check, it's returned as the final result. However, if either the input or output is intervened by the guardrail, a message is returned showing the nature of the intervention and whether it happened at the input or output stage. The examples showcased in the following sections demonstrate inference using this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following steps:
1. On the Amazon Bedrock console, choose Model catalog under Foundation models in the navigation pane.
At the time of composing this post, you can use the InvokeModel API to conjure up the design. It doesn't support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a service provider and select the DeepSeek-R1 model.
The model detail page supplies necessary details about the model's capabilities, rates structure, and application standards. You can discover detailed usage directions, consisting of sample API calls and code bits for integration. The model supports different text generation tasks, including content production, code generation, and concern answering, using its support learning optimization and CoT reasoning capabilities.
The page also includes deployment options and licensing details to help you get going with DeepSeek-R1 in your applications.
3. To start using DeepSeek-R1, choose Deploy.
You will be prompted to set up the release details for DeepSeek-R1. The model ID will be pre-populated.
4. For Endpoint name, get in an endpoint name (between 1-50 alphanumeric characters).
5. For Number of circumstances, enter a variety of instances (between 1-100).
6. For example type, pick your circumstances type. For optimum performance with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is suggested.
Optionally, you can set up sophisticated security and facilities settings, consisting of virtual private cloud (VPC) networking, service function authorizations, and file encryption settings. For most use cases, the default settings will work well. However, for production releases, you may wish to review these settings to align with your organization's security and compliance requirements.
7. Choose Deploy to start utilizing the design.
When the deployment is complete, you can evaluate DeepSeek-R1's capabilities straight in the Amazon Bedrock play area.
8. Choose Open in play ground to access an interactive interface where you can experiment with various triggers and adjust design specifications like temperature level and optimum length.
When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for optimum results. For example, content for reasoning.
This is an excellent way to explore the model's reasoning and text generation capabilities before incorporating it into your applications. The playground provides instant feedback, assisting you understand how the model reacts to numerous inputs and letting you tweak your prompts for optimal results.
You can quickly test the model in the playground through the UI. However, to invoke the deployed model programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.
Run inference utilizing guardrails with the deployed DeepSeek-R1 endpoint
The following code example demonstrates how to carry out reasoning utilizing a released DeepSeek-R1 design through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have created the guardrail, utilize the following code to implement guardrails. The script initializes the bedrock_runtime customer, configures reasoning specifications, and sends a demand to create text based on a user timely.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) center with FMs, integrated algorithms, and prebuilt ML solutions that you can deploy with simply a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your data, and deploy them into production utilizing either the UI or SDK.
Deploying DeepSeek-R1 design through SageMaker JumpStart provides two convenient methods: using the instinctive SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's explore both methods to help you pick the approach that finest fits your needs.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following actions to release DeepSeek-R1 using SageMaker JumpStart:
1. On the SageMaker console, pick Studio in the navigation pane.
2. First-time users will be prompted to create a domain.
3. On the SageMaker Studio console, choose JumpStart in the navigation pane.
The design web browser shows available designs, with details like the provider name and model abilities.
4. Search for DeepSeek-R1 to see the DeepSeek-R1 model card.
Each design card shows essential details, consisting of:
- Model name
- Provider name
- Task category (for example, Text Generation).
Bedrock Ready badge (if applicable), indicating that this model can be registered with Amazon Bedrock, allowing you to use Amazon Bedrock APIs to conjure up the design
5. Choose the model card to see the design details page.
The model details page consists of the following details:
- The design name and supplier details. Deploy button to release the design. About and Notebooks tabs with detailed details
The About tab includes crucial details, such as:
- Model description. - License details.
- Technical specs.
- Usage standards
Before you release the model, it's suggested to evaluate the model details and license terms to validate compatibility with your usage case.
6. Choose Deploy to proceed with deployment.
7. For Endpoint name, use the immediately produced name or produce a custom one.
- For example type ¸ choose a circumstances type (default: ml.p5e.48 xlarge).
- For Initial instance count, go into the variety of circumstances (default: 1). Selecting appropriate instance types and counts is essential for cost and performance optimization. Monitor your deployment to adjust these settings as needed.Under Inference type, Real-time inference is chosen by default. This is optimized for sustained traffic and low latency.
- Review all setups for accuracy. For this model, we highly recommend sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in location.
- Choose Deploy to deploy the model.
The release process can take numerous minutes to finish.
When implementation is complete, your endpoint status will change to InService. At this moment, the design is prepared to accept reasoning requests through the endpoint. You can keep an eye on the deployment development on the SageMaker console Endpoints page, which will display relevant metrics and status details. When the deployment is complete, you can conjure up the design utilizing a SageMaker runtime customer and integrate it with your applications.
Deploy DeepSeek-R1 utilizing the SageMaker Python SDK
To get begun with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to set up the SageMaker Python SDK and make certain you have the required AWS approvals and environment setup. The following is a detailed code example that demonstrates how to release and use DeepSeek-R1 for inference programmatically. The code for deploying the model is provided in the Github here. You can clone the notebook and run from SageMaker Studio.
You can run extra requests against the predictor:
Implement guardrails and run inference with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail utilizing the Amazon Bedrock console or the API, and execute it as shown in the following code:
Clean up
To prevent undesirable charges, complete the steps in this section to tidy up your resources.
Delete the Amazon Bedrock Marketplace release
If you released the design using Amazon Bedrock Marketplace, total the following actions:
1. On the Amazon Bedrock console, under Foundation models in the navigation pane, select Marketplace deployments. - In the Managed releases area, find the endpoint you wish to delete.
- Select the endpoint, and on the Actions menu, select Delete.
- Verify the endpoint details to make certain you're erasing the proper release: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart design you deployed will sustain costs if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we checked out how you can access and release the DeepSeek-R1 design utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to begin. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting started with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI business develop innovative services utilizing AWS services and sped up calculate. Currently, he is focused on establishing strategies for fine-tuning and enhancing the reasoning efficiency of large language designs. In his spare time, Vivek enjoys treking, viewing movies, and trying different cuisines.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.
Jonathan Evans is an Expert Solutions Architect working on generative AI with the Third-Party Model Science group at AWS.
Banu Nagasundaram leads product, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is enthusiastic about developing services that help customers accelerate their AI journey and unlock company worth.